Heat-shock and stringent responses have overlapping protease activity in Escherichia coli. Implications for heterologous protein yield.
نویسندگان
چکیده
The cellular response of a heat-shocked controlled chemostat of Escherichia coli JM105 [pSH101] was characterized and compared to that of a similar culture induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The proteases elicited by the IPTG pulse were previously shown to be upregulated by the stringent stress response and were shown here to be upregulated by heat shock, although to a lesser extent. Owing to the apparent overlap between these responses, a relaxed mutant (rel-, devoid of the stringent response; JM109) was examined for its response to both a chemically imposed stringent response and to IPTG induction in controlled chemostats. There was no significant upregulation of protease activity under either imposed stress. More important, a nine-fold increase of chloramphenicol acetyl-transferase (CAT) activity was found for the IPTG-induced relaxed mutant culture. Additionally, the responses from heat shock and IPTG induction were examined in batch cultures. The culture that was simultaneously IPTG-induced and heat-shocked was observed to have the highest CAT activity as well as the most rapid loss in activity after a maximum. Control experiments indicated that the heat shock did not affect loss of CAT activity; instead, the loss of activity correlated with the amount of CAT synthesized. Furthermore, an increase in CAT expression was found during heat shock. Results indicated that heat shock and, alternatively, the use of stringent response-mutant hosts could both be used to facilitate increased recombinant protein yields in the E. coli expression system.
منابع مشابه
Cloning and Expression of Heat Shock Protein 60kDa Gene from Brucella melitensis as Subunit Vaccine
Brucellosis is caused by the bacterium Brucella and affects various domestic and wild species. GroEL (Heat Shock Protein 60kDa) as one of the major antigens that stimulate the immune system, increases Brucella survival. The aim of the current study was to clone and express GroEL in Escherichia coli in order to design subunit vaccine. Amplifying was performed using specific primers. The full-len...
متن کاملAntifungal Activity of Heterologous Expressed Chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220
The cDNA from the mycoparasitic fungus Trichoderma atroviride PTCC5220 encoding a 42 kDa chitinase (Chit42) was isolated. The nucleotide sequence of the cDNA fragment as having a 1263 bp open reading frame that encodes a 421 amino acid polypeptide, and a high homology was found withother reported Chit42 belonging to the Trichoderma sp. The 22 amino acid N-terminal sequence is a putative s...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملOmpT expression and activity increase in response to recombinant chloramphenicol acetyltransferase overexpression and heat shock in E. coli.
The activity of a 35 kDa protease increased in response to induced expression of chloramphenicol acetyltransferase (CAT) in E. coli. This protease was partially purified, extensively characterized, and identified via the use of zymogram gels as the outer membrane protease, OmpT. In experiments targeting the overlap of well-characterized stress responses, OmpT activity was found to increase in r...
متن کاملThe Effect of Heat Shock on Production of Recombinant Human Interferon Alpha 2a (rhIFN α -2a) by Escherichia coli
Recombinant human interferon alpha 2a (rhIFN α -2a) production and cell growth were monitored in a set of genetically modified E. coli strains (MSD1519, MSD1520, MSD 1521, MSD 1522, MSD 1523) producing rhIFN α -2a. The growth was followed at OD 600 nm, changes in cell physiology were detected by pyrolysis mass spectrometry (PyMS) of cell biomass and recombinant protein production was determined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied biochemistry and biotechnology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 1999